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AB STRACT

A disturbance isolation controller (DIC) is developed for a simplified model of

the Solar Electric Propulsion System (SEPS) flight experiment which consists of a

rigid Sperry gimbal torquer (AGS) mounted to a rigid Orbiter and the SEPS solar array

(rigid) end mounted to the AGS. The main purpose of the DIC is to reduce the effects

of Orbiter disturbances which are transmitted to the flight experiment. The DIC uses

an observer, which does not require the direct measurement of the plant inputs, to

obtain estimates of the plant states and the rate of the plant states. (I) The state

and rate of state information is used to design a controller which isolates disturb-

ances from specified segments of the plant, and for the flight experiment, the

isolated segment is the SEPS solar array.

INTRODUCTION

The DIC design is an outgrowth of work form a dissertation(2_n model following

controllers and from efforts to reduce the Orbiter acceleration disturbances for the

European Instrument Pointing System (IPS) payloads. Model following controllers are

required to have estimates of the plant states so that the plant can follow the model.

If the inputs to the plant are not available for direct measurement, then the state

estimator used in the model following controller can have biases; therefore, the

model following controller performance is degraded. For the IPS controller, an ac-

celerometer is mounted at the base of the IPS gimbals to measure accelerations caused

by Orbiter disturbances. These disturbances are not available for direct measure-

ment, so a state estimator, used in the IPS controller, would have biases and so

would the rate of state information obtained by the estimator. With the apparent

inability to estimate the states of the plant, an observer or filter is not useful

for control of Orbiter disturbances.

An observer is developed for the flight experiment which does not require direct

measurement of all the plant inputs. The observer's inputs are the output measure-

ments of the states and the output measurements of the rate of the states. Using

the output measurements of the AGS rate gyros and the AGS accelerometers, the observ-

er converges to the plant states and the plant accelerations. This observer is a

key ingredient in the DIC design.

The DIC is a force/torque feedback controller which uses the observer accelera-

tion estimates and knowledge of the plant parameters to determine the appropriate

torques for reducing the disturbance effects on certain segments of the plant. The

reduction of acceleration effects not only decreases the loads on the payloads, but

also improves payload pointing capability. The DIC can best be delineated by ap-

plying the control design to the simplified model of the flight experiment.
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FLIGHT EXPERIMENT MODEL

The linear equations of motion for a rigid SEPS solar array connected to a rigid

AGS which is connected to a rigid Orbiter are
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(i)

(2)

(3)

01 = 3x3 zero matrix,

I1 = 3x3 identity matrix,

mij = 3x3 mass matrix, (i,j) _ (1,2,3),

d = 3x3 tilde matrix representing a distance measurement from the Orbiter c.g.
sm

to the AGS gimbal torquers,

t
TG = 3x3 transpose of the AGS gimbal angles,
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= 3xl vector position, velocity, and acceleration of the Orbiter c.g.,
o

_o' $ _ = 3xl vector angular displacement, velocity, and acceleration of the
o' o Orbiter,

_i' Si' _'i = 3xl vector angular displacement, velocity, and acceleration of the
AGS payload,

_T' ST = 3xl vector measurement of the plant states provided by the AGS rate
gyros,

A = 3xl vector measurements of the rate of the plant states provided by the AGS

g accelerometers,

F = 3xl vector Orbiter disturbance which cannot be measured directly,

rd = vector from Orbiter c.g. to application of F, and

T = 3xl vector control torque provided by the AGS gimbal torquers.
c

The Orbiter linear displacements are eliminated from (i) by the relationship

F° = mll -I (F - m125"o - m13'$i).
(4)

Substituting (4) into (i) and into (3) gives

Ln21[nllII n121 [-_'i-I = [ PlI-] F+----";I ----n22J _ [-P21_ 0[--II_ Tc

and (5)

Ag : [01_ V12 : 01 1lV14 ] o
mm_

°.

O
mal

1

1

-i

+ mll
F (6)

where

-i

nll = m22 -m21 mll m12,

-i

n12 = m23 -m21 mll m13,

-I

n21 = m32 -m31 mll m12'

-i

n22 = m33 -m31 mll m13'
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_" -i

Pll -- rd -m21 mll '

-i
P21 ='m31 roll '

Vl 2 _ -i= sm -mll m12 , and

-I
V14 = -mll m13

while the attitude measurement equation becomes
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Writing equation (5) in state form gives
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Alas! Upon examiniation of (7) and (8), it is found that the system is not observ-

able. To remove this thorn from one's side, consider adding feedback to (i) by

defining

(7)

where

(8)

T = T + (9)c o Tcl
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T o = -KI$ i - Ko i_" and

Tcl is unspecified.

Substituting (9) into (5) and rearranging yields

ii
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and writing (i) in state form gives
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-i

[ k i k121 = I I n12] 1-01 1 _°"]
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, and

With a suitable selection of K and _-i, the system equations (ii) and (7) are observ-

able. Once the observability _riterlon is met, the observer and the DIC can be

formulated.

OBSERVER AND DIC DESIGN

The key factor in the DIC is an observer which does not require direct measure-

ment of the plant inputs. The observer for the flight experiment is derived by first

rewriting (ii), (7), and (6) into generic system equations. The system equations are

= Ax + Bc Tcl + BD F, (12)

y = Cx, and (13)

z = P_{ + PD F. (14)
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The full state observer (i) for (12), (13), and (14) is of the form

= E_ + Gy + Hz + JTcl (15)

where

E = 12x12 observer dynamic matrix,

G = 12x6 matrix (unknown for present),

H = 12x3 matrix (unknown for present),

J = 12x3 matrix (unknown for present), and

= 12xl vector of the observer states.

Let _ be a linear combination of x such that

= Tx. (16)

Substituting (12)-(14) and (16) into (15) gives

T_ = ETx + GCx + H[P(Ax + BcTcl + BDF) + PD F] + JTcl (17)

Premultiplying (12) by T gives

T_ = TAx + TBcTcl + TBDF. (18)

Subtracting (17) from (18), collecting terms, and equating variables yields the

matrix relations

TA - ET = GC + HPA,

TB = HPA + J, and
c

TB D = H(PB D + PD ).

If (PB D + PD )-I exists, then

H = TBD(PB D + PD )-I.

Substituting (22) into (19) and collecting terms gives

T[I - BD(PB D + PD)-Ip]A - ET = GC.

Letting

A 1 = [I - BD(PB D + PD)-Ip]A

(19)

(2o)

(21)

(22)

(23)

(24)
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and using direct products(3_n (23) yields

A
- = GC(I _: AIt E_DI)_

where _ and G_ are 144xi vectors of the form

(25)

A

T =

t
tl,

t

t12,*

A

and GC =

(GC) 1,t

o

(GC) 12 ,,t

If A I and E have no common eigenvalues, then

-- (I _AI t - E _ I) -I _C, (26)

H = TBD(PB D + PD )-I, and
(27)

J = TB - HPA. (28)
C

If G is selected such that rank of C is equal to the rank of GC, (4) then T -1 exists.

For this paper, a reduced order observer is derived. The derivation is the same

as the full state observer except that the dimension of T, E, and G are different.

For the reduced order observer, the transformation is

= [16 _AI t - E ® I12 ]-I G_ (29)

where

16 = 6x6 identity matrix,

112 = 12x12 identity matrix,

E = 6x6 stable matrix, and

G = 6x6 matrix.

For the simplified flight experiment model, the system parameters are shown in

Table i and the observer parameters are shown in Table 2. Catenating the measure-

ment equation (13) with the transformation obtained in (29) gives
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Since the rank of GCequals the rank of C, a solution for the plant states exists
and it is

X _ .... Y_ •

Table 3 shows the transformation and its inverse. This concludes the observer

derivation for the flight experiment model.

(31)

To demonstrate the DIC design, consider the third vector equation in (i) which

is

•o .,

m31 _ + + = T + = T + TA +o m32_o m33_i o Tcl o TDIC
(32)

where

TA = 3xl attitude control torque and

TDI C = 3xl DIC torque.

Premultiplying Ag in (3) by m31 yields

m31Ag = m31Fo + m31 dsm_o'
(33)

Using this result and the estimates of the plant states in (31), let

TA = -LlX 4 -LoX 3 + m31Ag
(34)

where

--x3- -_

L = 3x3 attitude position gain, and
o

L 1 = 3x3 attitude rate gain.

Substituting (34) into (32) and collecting terms in the resulting equation gives

= +
(m32 - m31_sm)_o + m33_ i -LlX 4 -LoX 3 + TO TDI C (35)

Differentiating (31) yields

[+l[+] (36)
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where

Xl] I" I-x]- 1

-r-i. 1 .i

Since x2 converges to _o' select

TDI C = -T + - •o (m32 m31dsm)X2
(37)

Substituting (37) into (35) gives

+ LlX 4 + LoX 3 + (m32 - m31[sm)(2" 0 - _2)

= m33'_i + LI_ i + Lo_ i = 0 (38)

which shows that the ¢ variable is isolated from the dynamic variables r° and• o
and the Orbiter disturbance F which is the goal of the DIC.

SUMMARY

This paper contains the development of a disturbance isolation controller for a

simplified model of the SEPS flight experiment. The DIC design primarily consists

of a method to obtain observer estimates which will converge to the plant states and

the plant accelerations. Using the acceleration estimates, the DIC isolates the AGS

payload from the Orbiter disturbances. Future considerations will include the

effects of system noises, nonlinear plants and measurements, and a determination of

the observer robustness.
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£
0 $ 0 0 0 0

-2 "2 o o 0 0
0 0 _0 _1 0 0
0 0 2 2 0 0
0 0 0 0 _0 _I
0 0 0 0 2 2

G
100000
010000
001000
000100
O000tO
00oo01

H
0 0 0
0 0 0
0 0 0
0 0.0431 0

-_.o431 0 0
o o 0

-0.00241 0.00952 0.0342
0._541 _0.0357 -0.0305
0 0.0578 0
0 0.086 _0
O.O0_BZ _0.0_78 0.068_

-0.01_8 0.0C621 0.5??

J
O.OOEO (J _OEO O.OOEO
0.00E0 0 GOE0 0.00E0
0.00E0 0 00E0 0.00E0
1.36E S 0 00Eg 0.00F0
0.00E0 1 36E S 0.00EO

O.OOEO 000EO _4, _SE_3
3.13E 6 1.29E_6 1.25E_5
4.29E-6 5.95E 7 _3.16E 8
1,16E_6 O.OOEO 5.36E-4
1,97E 6 O.OOEg 6.94E-4

_6.73£-10 _2.58E 6 1.55E 4
4.62_ 9 1.19E-6 3.78E-4

TABLE 2. OBSERVER PARAMETERS
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NOMENCLATURE

Mll "r'o+ M12 ¢o+ M13 ¢ i" F : ORBITER CG TRANSLATIONAL EQUATION

M21 _o + M22 ¢o + M 23 _;i "_d F: ORBITER ROTATIONAL EQUATION

M31 'r'o+ M32 ¢ o + M33 _ i" TC + To : PAYLOAD ATTITUDE EQUATION

F: FORCE WHICH IS NOT DIRECTLY MEASUREABLE i.e.. CREW MOTION OR RCS

TC: CONTROL TORQUE

To: OBSERVABILITY TORQUE (ADDED)

rd: VECTOR FROM ORBITER CG TO FORCE (F) APPLICATION

Mij: MASS MATRIX COMPONENTS

¢ T = Tt ¢o + d_i : DIGITAL RATE GYRQ MEASUREMENTS

qJT " T Gt 4_o + @ i : ANALOG RATE GYRO MEASUREMENTS

TGt : TRANSFORMATION FROM INERTIAL TO BODY FRAME

Ag - _o + d'SM ¢o : AGS BASE ACCELEROMETER MEASUREMENTS

dSM - VECTOR FROM ORBITER CG TO AGS ACCELEROMETERS

• FLIGHT EXPERIMENT CONFIGURATION

RATE GYRO'S AND ACCELEROMETERS

ARRAY

AGS

FCREW
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OEXPER IMENT OBJECTIVES

• SUITA BLE STRUCTURE

*ASPECTS OF LSS CONTROL

• CONTROL OBJECTIVES

• D ISTRIBUTED SENSOR CONTROL

• MODAL DAMPING

• NESTED CONTROLLER

• DISTURBANCE ISOLATION CONTROL

• ORBITER DISTURBANCES

•ACCELERATION REDUCTI ON

mll

m21

m31

OSYSTEM EQUATION FOR SIMPLIFIED MODEL

ml 2 m 1 t" o 11 01

m22 m231 I, = Td F+ 01 J Tc +

To,oi,ioiI
L,i,_jLo_ o, o, TG' o, ,_

l
ro

i
ro

I¢ o

_' o

q'i

,I, i

Ag =[01
I1 01 "dsm 01 ol]! o

_°i
¢i

01

11

T o
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SYSTEM BLOCK D IAGRAM

,N,'OT ,-1PLANT_ SENSORS'NFO'_,,AT,ONI

CONTROL

INPUT

ICONTROLLER t

_l OBSERVER
OR

_ KALMANFILTER

ESTIMATES OF

PLANT STATES

• GENERIC SYSTEM EQUATI ONS

- Aw + BcTcl + BDF

y'=Cx

z = P_ + PD F

• OBSERVER FORM

&=,,Ecx + Gy + Hz + JTcl

• OBSERVER CONSTRA INT EQUATI ONS

TA - ET - GC + HPA

TB c = HPB c + J

TB D=H(PB D+PD )

• CONSTRAINT EOUAT] ON SOLUTIONS

÷. t

H = TB D (PB D + pD) -1

J == TB C - HPB C

360



• ESTIMATOR EQUATIONS

,.= T,,+oet (,_ IO) -TxlO 0

&=T_+Ee et (_ (0) - T x (0))

°,1 [°ol r ,l F °3
° '_TI°°1_No/_I..T/_°/
°'/I°d /_',1/°'/
..,,j L'_,j L_,=J L_'_J

e D ISTURBANCE ISOLATI ON CONTROL TORQUE

m31 "ro+ m32 _o + m33 _i " To ÷ TA + TDIC

A 9 = _o + d'tm _o

TA = -L1 _4-Lo =3 +m31Ag

TDIC = - To + (m32 - m31 dsm ) & 2

OFUTURE INVESTIGATION

• COMPLEX SAFE MODEL

• OBSERVER SENSITIVITY (PARAMETERS)

• OBSERVER TRUNCATION

• MODES

,, WORD LENGTH

•NOISE
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